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Abstract- The state of the art of all the motion 

detection techniques that are being employed currently 

in real time motion sensing systems. The work 

discusses mechanisms like Optical Flow, Frame 

differencing, Running Gaussian average as viable 

mechanisms for motion sensing and also their 

limitations. The work primarily focuses on Adaptive 

Gaussian Mixture Models as the preferred mechanism 

over other options. The work presents simulated 

results of motion sensing under different ambient 

conditions and different illumination conditions. The 

work presents a comparative analysis of all the 

existing mechanisms with the proposed mechanism. 

 

Keywords: Motion Sensing, Background Subtraction, 

AGMM, GMM 

 

I INTRODUCTION 

It is the human desire that has led to automatic 

detection systems and intelligent surveillance systems 

which make lives easier as well as enable us to 

compete with tomorrow’s technology. On the other 

hand it has pushed us to analyze the challenge sin the 

field of automated video surveillance in light of the 

advanced artificial intelligence systems. 

The surveillance cameras nowadays are already 

prevalent in secured commercial locations, with 

camera outputs being recorded to tapes that are either 

rewritten or periodically stored in video archiving 

systems. In order to benefit from this prerecorded 

digital data, detecting any moving object from the 

scene is required and that too without engaging any 

human aid. Real-time segmentation of moving regions 

in image sequences has been a fundamental step in 

many vision systems. 

 

II MOTION DETECTION 

Motion detection in consequent images the detection 

of the true moving object in the scene. In real time 

video surveillance systems, motion detection refers to 

the capability of the system to detect motion and 

capture the events and time of occurrence. That also 

requires a software-based monitoring algorithm which 

in turn will signal the surveillance camera to begin 

capturing the event when motion activity is detected. 

This is also called activity detection. An advanced 

motion detection surveillance system can analyze the 

type of motion for triggering an alarm system. In this 

project, however, the work confines to the robust 

sensing of activity in prerecorded video feed possibly 

taken from an associated real time surveillance 

mechanism and its associated mechanisms 

(morphological operations, filtering, shadow removal 

etc.) which in turn can be associated with a hardware 

based surveillance system. However, the development 

of that is not the scope of this work. 

 

III PROPOSED METHODLOGY  
Background modeling by Gaussian mixtures is a pixel 

based process.  

 

 
Figure 1 Block diagram Proposed Methodologies 
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Let x be a random process representing the value of a 

given pixel in time. A convenient framework to model 

the probability density function of x is the parametric 

Gaussian mixture model where the density is 

composed of a sum of Gaussians. Let p(x) denotes the 

probability density function of a Gaussian mixture 

comprising K component densities. 

𝑝(𝑋) = ∑ 𝜔𝑘 𝑁(𝑋;𝐾
𝑘=1 𝜇𝑘,𝜎𝑘 )                            Eqn.1 

Where 𝜔𝑘  are the weights and N(x; 𝜇𝑘, σk) is the 

normal density of mean 𝜇𝑘 and covariance matrix Σk = 

σkI, (I denotes the identity matrix). The mixture of 

Gaussians algorithm, proposed by Stauffer and 

Grimson [12] estimates these parameters over time to 

obtain a robust representation of the background.  

The work starts with the generation of frame 

sequences from the input video. Then the Probability 

density functions are calculated for a Gaussian 

Mixture comprising K component densities. MFCCs 

are obtained as follows. First, the parameters are 

initialized with ωk = ω0, μk = μ0 and σk = σ0. If there is 

a match, i.e. then the parameter mixtures are updated 

as per the mentioned equations follow up by 

normalizing the weights at each iteration to add up to 

1. A threshold λ is applied to the cumulative sum of 

weights to find the set {1...B} of Gaussians modeling 

the background. Intuitively, Gaussians with the 

highest probability of occurrence, wk, and lowest 

variability in the distribution, measured by σk, 

indicating a representative mode, are the most likely to 

model the background. 

Parameters for Simulation 

The parameters that have been used in simulation are 

mentioned and briefly discussed below; 

1) Number of Gaussian Densities (K): It 

represents the number of Gaussian densities 

used that are used to compute the PDF. 

Calculations have been done for K=3 and 

K=4. 

2) Background Threshold (λ): A threshold λ is 

applied to the cumulative sum of weights to 

find the set {1...B} of Gaussians modelling 

the background. 

3) Covariance (σ): Covariance matrix which is 

used in calculation of initial pdf. 

4)  Component Threshold: Normally taken as 

10. 

 

IV SIMULATION RESULTS 

Car Park Video 

1) 520 frame Video. 

2) 10 fps. 

3) Background: Stable. 

4) Illumination Change: Partial. 

5) Objects to track: Multiple. 

The video consists of multiple objects that are required 

to be tracked. The system efficiently tracks both the 

moving car and the pedestrian. It locks on to moving 

man once the car is stationary, and that the multiple 

objects have been tracked successfully. The algorithm 

has seamlessly detected even multiple objects as it can 

be seen from various images where after subtraction 

and morphological filtering correct markers have been 

implanted. 

Input frame from video that consist of multiple objects 

like moving car, stationary car and moving man also. 

This frame we can see in the Figure 2. 

 

  
Figure 2 Input Frame 

 

To track the multiple objects we have to extract the 

best background of this input video and this extracted 

image is extracted best background image. As we can 

see from the Fig. 3. False detection is more 

prominently visible in the initial learning stage that 

should be removing after using some applications. 

When some false detection occurred in tracked object 

image after subtraction frame then we updated the 

mixture parameter, and the object is traced 

successfully with few false detection being removed 

by filtering. As we can see in fig 4. 

 

 
Figure 3 Extracted Best Background Image. 
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Figure 4 Initial learning phase after filtering 

 

After filtering of image frame of initial learning phase 

apply hue to detected area for tracking the object. As 

we can see in the results Figure 5. 

 

 
Figure 5 after applying Hue to detected area 

 

Applying Hue to detected area we have to show the 

object so we marked the object and traced the object 

successfully. As we can see from the Figure 6.  

 

 

Figure 6 Object Marked and Tracked 

 
Fig. 7 Multiple Object Detection (Man and car 

both moving) 

 
Fig. 8 Car Stationary and man moving 

 

The video consists of multiple objects that are required 

to be tracked. The system efficiently tracks both the 

moving car and the pedestrian. It locks on to moving 

man once the car is stationary. However the initial 

learning phase was slightly slower than previous 

videos owing to the initial visibility in this video is 

very poor as the illumination change is significant and 

the camera is at a significant distance away from the 

object. 
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V COMPARISON OF PAST AND PRESENT 

WORK 

 

Evaluation Value True Positive and False Negative 

Recognition 

 

Paramet

er 

True Positive Rate 

Value 

False Negative Rate 

Value 

     

Algorithm 

 

Variance 

EM 

Algorith

m 

AGM 

Algorith

m 

EM 

Algorith

m 

AGM 

Algorith

m 

0.012 0.65 0.85 0.12 0.12 

0.012 0.6 0.81 0.20 0.20 

0.012 0.57 0.70 0.30 0.30 

0.012 0.40 0.60 0.40 0.40 

 

Using the value of evaluation of performance of 

proposed algorithm (AGM Algorithm) and past work 

algorithm (EM Algorithm) we conclude that the mean 

of true positive is 85% with variance 0.012 and the 

mean of false negative rate is 0.12. We can also see 

from the graph which has plotted between true positive 

recognition and false negative Recognition rate. 

 

 
Figure 9 Line Chart of Evaluation of Performance 

of Algorithm 

 

VI CONCLUSION 
This paper has presented a detailed account on the 

state of the art in the field of Motion Detection through 

Computer Vision. The work discussed all the 

technologies like Optical flow, Gaussian average etc. 

and the mathematical concepts involved in the 

algorithms. The paper discussed at length the 

advantages using Gaussian Mixture models and 

presented the use of Adaptive GMM as an enhanced 

tool for motion sensing. The results showed the 

effectiveness of AGMM in detection of motion in 

videos with varying light intensities and poor 

visibilities. The work showed satisfactory 

performance in terms of its detection capabilities and 

learning rate performance. 
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