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ABSTRACT:- This paper discusses in detail the 
Gaussian mixture model (GMM) is always used 
to estimate the underlying density function in 
many real applications. In this pa­ per, we 
develop an improved Gaussian mixture model 
(IGMM) based on least-squares cross-validation 
(LSCV) and Gaussian PSO with Gaussian jump 
(GPSOGJ). According to least-squares cross-
validation, a new error measure criterion is 
derived which is used to evaluate the estimation 
error between the true density function and the 
estimated density function. Then, GPSOGJ is 
used to find the optimal parameters that can 
make the estimation error reach the minimum. 
In our experiments, we com­ pare IGMM with 
two existing methods as GMM with Parzen 
window (PGMM) and GMM based on particle 
swarm optimization (PSOGMM) on four 
probability distributions: Uniform density, 
Normal density, Exponential density, and 
Rayleigh density. The experimental results 
demonstrate that our strategy can get good 
estimation performance when the corresponding 
parameters are optimized with GPSOGJ. 
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INTRODUCTION 

It is very important to estimate the underlying 
probability density function in many practical 
applications. Gaussian Mixture Model (GMM) is 
the most popular parametric probability density 
estimator which represents the unknown density 
function with the weighted sum of Gaussian 
probability density functions. The estimated density 
function can be written as the following form under 
the framework of GMM. For the sake of simplicity, 
we only expand our discussion based on the one­ 
dimensional dataset. Let (x) in Eq. (1.1) denote the 
estimated density function: 
 

 
መ݂(ݔ) = ∑ ߱ே

௜ୀଵ i G (x-µi,σi
2)    Eqn.1.1 

 
Where, N is the number of given one dimensional 
dataset X = {x1, x2, x3………., xn}, µi and σi are the mean 
and variance of the i-th Gaussian component, G (x-

µi,σi
−] σi exp ߨ2√/1 = (2 (୶ିஜ౟)మ

ଶ஢౟
మ ], the weight ωi 

should satisfy the following constraint: 

෍߱௜ = 1
ே

௜ୀଵ

,∀ ߱௜ > 0. 

When the parameter ωi, µi, and (i=1, 2, 3……., N) 
in GMM are determined, the underlying density 
function can be obtained. The main method used to 
determine the parameters is Expectation-
Maximization Algorithm (EMA). The published 
literatures all report that their EMA based 
algorithms can improve the estimation performance 
of GMM. However, the computational complexity 
of GMM with EMA is extraordinarily high, and 
this point is always neglected by the re­ searchers. 
In our study, we try to reduce the time cost for 
solving GMM and at the same time maintain a 
satisfied estimation performance. In order to 
achieve this goal, the Particle Swarm Optimization 
(PSO) method is adopted. Therefore, in this paper, 
we develop an improved Gaussian mixture model 
(IGMM) based on least-squares cross-validation 
(LSCV) and Gaussian PSO with Gaussian jump 
(GPSOGJ). According to least-squares cross-
validation, a new error measure criterion is derived 
which is used to evaluate the estimation error 
between the true density function and the estimated 
density function. Then, GPSOGJ is used to find the 
optimal parameters that can make the estimation 
error reach the minimum. In our experiments, we 
compare IGMM with the existing methods­ GMM 
with Parzen window (PGMM) and GMM based on 
particle swarm optimization (PSOGMM) on four 
probability distributions: Uniform density, 
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Exponential density, and Rayleigh density. The 
experimental results demonstrate that our strategy 
can get good estimation performance when the 
corresponding parameters are optimized with 
GPSOGJ. 
 

LEAST SQURES CROSS 
VALIDATION (LSCV) 

There are three kinds of parameters which should 
be determined in GMM: the weight ωi, the mean µi, 
and the variance σi of the Gaussian density function 
G (x- µi, σi

2), (i=1, 2, …..,N). The setup of 
parameter µi is enlightened by parzen window 
method which computes the underlying density 
according to Eqn. 1.2. 

݂ ෡ (ݔ) =
ଵ
ே௛
∑ ݇(௫ି௫೔

௛
ே
௜ୀଵ ) ଵ

ே௛
∑ exp [− ଵ

ଶ
ே
௜ୀଵ (௫ି௫೔

௛
)ଶ

                                          Eqn. 1.2 

Where N is the number of samples in the dataset, h 
is the band-width parameter, and K is the kernel 
function. The bandwidth parameter h is determined 
by N which meets the following requirements: 
limே→ାஶ ℎ(ܰ) = 0  and   limே→ାஶ[ܰ× ℎ(ܰ)] =
∞. The kernel is a real valued, non-negative, and 
integrable function which satisfies the following 
conditions: ∫ (ݑ)ܭ = 1ାஶ

ିஶ  and ∀ (ݑ)ܭ,ݑ =
 Let µi = xi, (i=1, 2, …., N), then Eqn.1.1 .(ݑ−)ܭ
could be as rewritten Eqn. 1.3. 

݂ ෡ (ݔ) = ∑ ఠ೔

√ଶగఙ೔
ே
௜ୀଵ exp [− (௫ି௫೔)మ

ଶఙ೔
మ ] 

    Eqn. 1.3 
 
Then two parameters need to be fixed, i.e. the 
weight ωi and the variance σi. We want to select the 
parameters that can make the estimation error 
between the true density f(x) and the estimated 
density መ݂(ݔ) reach the minimum. The estimation 
error can be represented as Eqn. 1.4. 
 
ூீெெܧ = (ݔ)݂]∫ − መ݂  ଶ        Eqn. 1.4[(ݔ)
 
From the Eqn. 1.4, we can get 
 
ூீெெܧ = ∫[ መ݂(ݔ)]ଶ݀ݔ − 2 መ݂(ݔ)݂(ݔ)݀ݔ +
 Eqn. 1.5                                     ݔଶ݀[(ݔ)݂]∫
 
From the above Eqn. 1.5, we can easily find that 
the third term ∫[݂(ݔ)]ଶ݀ݔ is not related with the 
parameters that need to be determined, thus can be 

neglected. The error criterion EIGMM is then 
changed as Eqn. 1.6. 

∗ூீெெܧ = ∫[ መ݂(ݔ)]ଶ݀ݔ − 2 መ݂(ݔ)݂(ݔ)݀ݔ = ܣ −                                                                                                     ܤ
 Eqn. 1.6 

Firstly, 
ܣ

= න[ መ݂(ݔ)]ଶ݀ݔ

= න{෍
߱௜

௜ߪߨ2√

ே

௜ୀଵ

−]݌ݔ݁
ݔ) − ௜)ଶݔ

௜ଶߪ2
]}ଶ݀ݔ 

= න[෍ መ݂௜ଶ(ݔ)]݀ݔ + න[෍෍2 መ݂௜(ݔ) መ݂௝(ݔ)]݀ݔ
ே

௝ஷ௜

ே

௜ୀଵ

ே

௜ୀଵ

 

= ෍න መ݂௜ଶ(ݔ)݀ݔ + 2෍෍න መ݂௜(ݔ) መ݂௝(ݔ)݀ݔ
ே

௝ஷ௜

ே

௜ୀଵ

ே

௜ୀଵ

 

= ෍ܣଵ௜ + 2෍෍ܣଶ௜௝

ே

௝ஷ௜

ே

௜ୀଵ

ே

௜ୀଵ

.݊ݍܧ         1.7 

 

Where,  መ݂௜(ݔ) = ఠ೔
√ଶగఙ೔

exp [− (௫ି௫೔)మ

ଶఙ೔
మ ]. 

Now, we will determine the components A1i and 
A2ij, (i=1, 2, ……,N; j=1,2,……,N; j݆ ≠ ݅): 

ଵ௜ܣ

= න መ݂௜ଶ(ݔ)݀ݔ

=
߱௜
ଶ

௜ߪߨ2
න exp ቈ− ൬

ݔ − ௜ݔ
௜ߪ

൰
ଶ
቉ ݀(

ݔ − ௜ݔ
௜ߪ

) 

ݒ =
ݔ − ௜ݔ
௜ߪ

߱௜
ଶ

௜ߪߨ2
නexp(−ݒଶ)݀ݒ 

න exp(−ݒଶ)݀ݒ =
௜߱ߨ√

ଶ

௜ߪߨ√2
 

And,  
ଶ௜௝ܣ = න መ݂௜(ݔ) መ݂௝(ݔ)݀ݔ 
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Where, 

 ܽ = ௜ଶߪ + ,௝ଶߪ ܾ = ௝ݔ௜ଶߪ + ௜ݔ௝ଶߪ , ܿ = ௝ଶݔ௜ଶߪ +
,௜ଶݔ௜ଶߪ ܽ݊݀ ݀ = ௝ߪ௜ଶߪ .

ଶ 

Thus, we can get the formulation (i.e., Eqn. 1.8) of 
A by applying A1i and A2ij to Eqn.1.7. 
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Eqn.1.8 

 

 

Next, we will give the expression of B: 

ܤ = 2න መ݂(ݔ)݂(ݔ)݀ݔ = ൣܧ2 መ݂ି ௜(ݔ௜)൧

=
2
ܰ
෍ መ݂ି ௜(ݔ௜) =
ே

௜ୀଵ

2
ܰ Eqn. 1.9 

Where መ݂ି ௜(ݔ௜) denotes the kernel density 
estimation of (ݔ௜), (݅ = 1,2, … … … . . ,ܰ) based on 
the other (N-1) samples, and this is why we call 
this manner cross validation. Based on the above 
analysis, the new error criterion ܧூீெெ∗  of obtained 
by combining Eqn. 1.8 and Eqn. 1.9. So, the 
problem of finding the optimal parameters of 
GMM can be transformed into the following 
optimization formula as shown in Eqn. 1.10 

݉݅݊
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ଵߪ ,ଶߪ, … ேߪ…

∗ூீெெܧ
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ଶݔ௝
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ଶ

௜ଶߪ + ௝ଶߪ
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ே
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߱௜

௝ߪߨ2√
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൫ݔ௜ − ௝൯ݔ
ଶ

௝ଶߪ2
൩}        

ே

௝ஷ௜

ே

௜ୀଵ

.݊ݍܧ  1.10 

.ݏ ෍߱௜.ݐ = 1, ∀݅ ∈ {1, 2, … . ,ܰ},߱௜ ∋ 0.
ே

௜ୀଵ

 

 
GAUSSIAN PSO WITH GAUSSIAN 
JUMP-GPSOGJ 
 
PSO initialize the candidate solutions as a 
population of particles which is associated with the 
random particle keeps tracking its coordinates 
which are associated with the best fitness it has 
achieved so far, i.e., pbest. Another best value 
tracked by global version of the particle swarm 
optimizer is the overall best value, i.e., gbesf, and 
its location is obtained so far by any particle in the 
current population. It is worth nothing that PSO 
may stuck into locally optimal, where the fitness of 
the particle will have no improvement after certain 
number of iteration. In order to deal with this 
problem, the Gaussian PSO with jump is proposed, 
in which the “jump” mechanism is introduced to 
help PSO escaping the locally optimal. The 
procedures of GPSOGJ algorithm discussed later in 
proposed methodology section. 
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PROPOSED WORK 

Algorithm showing the sequence of step for 
determination of probabilistic density function of 
improved Gaussian mixture model for motion 
sensing based least square cross validation and 
Gaussian PSO with Gaussian jump, For each 
particle x, in population P 
 

௜ݒ = ݒ + ൫ݒ − ൯ݒ × ௜ܷ(0,1); 

∫∫ Use uniform probability distribution to initialize 
the velocity of particle xi, Whereݒ and ݒ denotes 
the upper and lower boundary of velocity 

௜ݔ = ݔ + ൫ݔ − ൯ݔ × ௜ܷ , (0,1); 

∫∫ Use uniform probability distribution to initialize 
the position of particle xi, Where ݔ and ݔ denote 
the upper and lower boundary of search space 

௜ݐݏܾ݁݌ =   ; ௜ݔ

∫∫The personal best position of all particle 

END FOR 

௜ݐݏܾ݁݃ = ݉݅݊
௜ݔ ∈ ݅

 ; [(௜ݔ)݂]

∫∫The global best position of all particle 

DO 

FOR each particle xi in population P 

[݅] ݐ݅ܽݓ ܨܫ ≤ max _ܰܧܪܶݐ݅ܽݓ 

∫∫wait[i] records the number of no improvement of 
fitness of particle xi. if wait [i] achieve the 
maximum number of no improvement of fitness 
max_wait, it indicates that the jump operation is 
needed, 

௜ݒ ← |ܴଵ|(ݐݏܾ݁݌௜ − (௜ݔ + |ܴଶ|(ܾ݃݁ݐݏ௜ −  ;(௜ݔ
 
∫∫ R1 and R2 are the random number generated from 
the standard Normal distribution N (0, 1) 

௜ݔ ← ௜ݔ +  ; ௜ݒ

                   ELSE 

௜ݔ ← ௜ݔ + .ߟ ௜ܰ(0,1);  

∫∫The Gaussian jump ∫∫The parameter η is in 
interval [0.01(ݔ − ݔ)0.1 ,(ݔ −  [(ݔ

COMPUTE f (xi); 

    END IF 

  IF ݂(ݔ௜)€݂(ݐݏܾ݁݌௜) ܶܰܧܪ 

௜ݐݏܾ݁݌    =  ;௜ݔ

 

∫∫Update the personal best position of each particle 

  COMPUTE f(xi); 

[݅]ݐ݅ܽݓ = 0; 

  ELSE 

[݅]ݐ݅ܽݓ + +; 

∫∫If there is no improvement of fitness of particle xi, 
wait[i] increases by one in every iteration  
   
END IF 
 IF f (xi) € f (gbest) THEN gbest = pbest,; 
END IF  

∫∫Update the global best position of all particles 

 END FOR 

UNTIL the termination condition is met 
 

OUTPUT gbest; 
 

In order to test the estimation performance of 
GMM with PSG algorithm, four different types of 
one dimensional artificial datasets are randomly 
generated as: Uniform dataset (UniD), Normal 
dataset (NorD), Exponential dataset (ExpD) and 
Rayleigh dataset (RayD). The probability density 
functions of these four distributions are as follows; 
 

(ݔ)݂
݉ݎ݋݂ܷ݅݊ = ݔ,1 ∈ [0,1]; 

 
(ݔ)݂

݈ܽ݉ݎ݋ܰ
=

1
ߨ2√

expቆ−
ଶݔ

2
ቇ ,−∞ < ݔ < +∞; 

(ݔ)݂
݈ܽ݅ݐ݊݁݊݋݌ݔܧ =

1
0.2 exp ቀ−

ݔ
0.2

ቁ ݔ, > 0; 

(ݔ)݂
ℎ݈݃݅݁ݕܽݎ = ݔ exp ቆ−

ଶݔ

2
ቇ , ݔ ≥ 0. 

In our experiment, all datasets can be randomly 
generated by MATLAB instructions. These 
instructions have been listed in Table 1 where N 
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denotes the number of samples generated. 
 
Matlab Instructions 

Probability 
density 

MATLAB 
implementation 

Uniform 
density 

X = unifrnd (0, 
1, N) 

Normal 
density 

X= normrnd (0, 
1, N) 

Exponential 
density 

X = exprnd (0.2, 
N) 

Rayleigh 
density 

X = raylrnd (1, 
N) 

 

Fig. Flow Block Diagram of Optimization and Computing 
Process of PDF and MSE 

Algorithm 1: Optimizing Eqn. 1.10 with GPSOGJ 
 
1: Initialize σi, (i= 1, 2, ……,N) with uniform 
distribution in interval [0, ( ଶ଻଴

଻଴√గ
)ଵ/ହ ×  =and ωi, (i [ݏ

1,2,…..N) with uniform distribution in interval 
[0,1]; 
 
2: For every distribution, 500 random samples are 
generated; 
 
3: Using GPSOGJ to find the optimal parameters in 
Eqn. 1.10. The maximal number of iteration is 100. 
The parameters max_wait =5, η = 0.05 in GPSOGJ. 
Implementation Detail Of Estimation Of Mse 
 
Two Parameters need to be optimized by PSO. We 
give the following two strategies to initialize the 
population: 
 

1. First for the variance σi, (݅ =

1,2, … … . ,ܰ), We let 0 < ௜ߪ ≤ ቀ ૛ૠ૙
ૠ૙√࣊

ቁ
૚
૞ ×

࢙, Where s is the standard derivation of 
training dataset ܺ = ,ଶݔ,ଵݔ} … … . ,  .{ேݔ
 

The upper bound of ߪ௜  can be obtained according to 
the following rule: In parzen window method, መ݂(ݔ) 
is the function of smoothing parameter and training 
samples X. The ℎ can affect the estimation 
performance a lot. A smaller ℎ will give a too 
detailed curve hence leads to small bais and large 
variance, while a larger ℎ will lead to low variance 
at the expense of increased bias. So, the upper 

bound of ℎ is limited, which isቀ ૛ૠ૙
ૠ૙√࣊

ቁ
૚
૞ × ࢙. By 

observing Eqn. 1.6 and 1.7, we find that GMM may 
treated as the generalized form of parzen window 
method. GMM is variation parameter estimation 
model; and parzen window method is a fixation 
parameter estimation model. So, we let this upper 
bound of ℎ as the upper bound as the same time, 
that is to say; 
 

0 < ௜ߪ ≤ ൬
૛ૠ૙
ૠ૙√࣊

൰
૚
૞

× ࢙, ࢏) = ૚,૛, … …  (ࡺ,

 
We initialize the population of ߪ௜ , (݅ =
1, 2, … … . ,ܰ) with the random numbers which 
obey the uniform density distribution in interval 
[0,( ૛ૠ૙

ૠ૙√࣊
)૚/૞ × ࢙].  

 
2. Second, we initialize the population of 

߱௜ , (݅ = 1,2, … . . ,ܰ)with the random number 
which obey the uniform density distribution in 
interval [0, 1] and guarantee that ∑ ߱௜ = 1.ே

௜ୀଵ  
Our experiment is carried out according to the 
algorithm ……: 

INPUT VIDEO

CREATE FRAME 
SEQUENCES

COMPUTE AND 
OPTIMIZING 

EQUATION 1.10

UPDATE THE 
PARAMETER OF THE 

MIXTURE

INTIALIZE σi, (I= 1, 2, 
……,N) WITH 

UNIFORM 
DISTRIBUTION IN 

PARTICULAR 
INTERVAL 

ωi, (i= 1,2,…..N) WITH 
UNIFORM 

DISTRIBUTION IN 
INTERVAL [0,1]

FOR EVERY 
DISTRIBUTION, 

500 RANDOM 
SAMPLES ARE 
GENERATED

USING GPSOGJ TO 
FIND THE OPTIMAL 

PARAMETERS IN 
EQN. 1.10

THE MAXIMAL 
NUMBER OF 

ITERATION IS 100

THE PARAMETERS 
max_wait =5, η = 0.05 

IN GPSOGJ
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For each probability density, we use GPSOGJ 
algorithm to search the optimal parameters based 
on four different types of univariate artificial 
dataset. Every type of dataset is generated 100 
times randomly. The averaged result based on these 
100 datasets is summarized for some distributions. 
The mean square error (MSE) is used to evaluate 
the estimation performance. 
 
Parameter for Simulation for motion 
sensing 
 
The parameters that have been used in simulation 
are mentioned and briefly discussed below; 
 

1) Number of Gaussian Densities (K): It 
represents the number of Gaussian 
densities used that are used to compute the 
PDF. Calculations have been done for 
K=3 and K=4. 

2) Background Threshold (λ): A threshold λ 
is applied to the cumulative sum of 
weights to find the set {1...B} of 
Gaussians modelling the background. 

3) Covariance (σ): Covariance matrix which 
is used in calculation of initial pdf. 

4)  Component Threshold: Normally taken as 
10. 

 
Simulation Results 

Results on the Zdenek Kalal Database. WALKING 
PERSON VIDEO.  

Video Details. 

1) 440 frame Video. 
2) 3 fps. 
3) Background: Stable. 
4) Illumination Change: Partial. 
5) Objects to track: Single. 

 

 
 

Input walking person Video from ZK Database 
 

Input frame of this is dull and background has also 
poor lighting so we extracted this frame into best 
background frame as we can see from figure. 
 

 
 

Extracted Best Background Image 
 
Again we can see the best background subtraction 
and track the object after image subtraction as we 
can see in the Figure. 
 

 

Tracked object Image after Subtraction 
 
False detection is more prominently visible in the 
initial learning stage that should be removing after 
using some applications. As we can see in the 
figure. When some false detection occurred in 
tracked object image after subtraction frame then 
we updated the mixture parameter, and the object is 
traced successfully with few false detection being 
removed by Morphological operations and filtering. 
As we can see in results of Figure. 
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Removed False Detection after Morphological Operations and 
Filtering 

 
Applying Hue to track the object after removing the 
false detection in the frame and see results in the 
Figure. 

 
 

After applying Hue to Tracked object 
 

 

Applied Markers on Tracked Object 

As we can see from the result that the object has 
been tracked successfully apart from a few false 
detections. Specifically gives the images only after 
background subtraction has been done. The follow 
up images Figures depict images after application 

of hue and depicted markers. The False detections 
are more prominently visible in the initial learning 
stage. As the mixture parameters are updated, the 
objects are tracked successfully with a few false 
detection being removed by morphological 
operations and filtering. To track the multiple 
objects we have to extract the best background of 
this input video and this extracted image is 
extracted best background image.  False detection 
is more prominently visible in the initial learning 
stage that should be removing after using some 
applications. When some false detection occurred 
in tracked object image after subtraction frame then 
we updated the mixture parameter, and the object is 
traced successfully with few false detection being 
removed by filtering  After filtering of image frame 
of initial learning phase apply hue to detected area 
for tracking the object. Applying Hue to detected 
area we have to show the object so we marked the 
object and traced the object successfully.  The 
video consists of multiple objects that are required 
to be tracked. The system efficiently tracks both the 
moving car and the pedestrian. It locks on to 
moving man once the car is stationary. However 
the initial learning phase was slightly slower than 
previous videos owing to the initial visibility in this 
video is very poor as the illumination change is 
significant and the camera is at a significant 
distance away from the object. 
 
EXPERIMENTAL DATA  

In order to test the estimation performance of 
GMM with PSG algorithm, four different types of 
one dimensional artificial datasets are randomly 
generated as: Uniform dataset (UniD), Normal 
dataset (NorD), Exponential dataset (ExpD) and 
Rayleigh dataset (RayD). The probability density 
functions of these four distributions are as follows; 
 

(ݔ)݂
݉ݎ݋݂ܷ݅݊ = ݔ,1 ∈ [0,1]; 

(ݔ)݂
݈ܽ݉ݎ݋ܰ

=
1
ߨ2√

expቆ−
ଶݔ

2
ቇ ,−∞ < ݔ < +∞; 

(ݔ)݂
݈ܽ݅ݐ݊݁݊݋݌ݔܧ =

1
0.2 exp ቀ−

ݔ
0.2

ቁ ݔ, > 0; 

(ݔ)݂
ℎ݈݃݅݁ݕܽݎ = ݔ exp ቆ−

ଶݔ

2
ቇ , ݔ ≥ 0. 

IMPLEMENTATIN DETAILS OF 
GMMPSOGJ 

Two Parameters need to be optimized by PSO. We 
give the following two strategies to initialize the 
population: 
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1. First for the variance σi, (݅ = 1,2, … … . ,ܰ), 

We let 0 < ௜ߪ ≤ ቀ ૛ૠ૙
ૠ૙√࣊

ቁ
૚
૞ × ࢙, Where s is the 

standard derivation of training dataset ܺ =
,ଶݔ,ଵݔ} … … .  .{ேݔ,
 
The upper bound of ߪ௜ can be obtained 
according to the following rule: In parzen 
window method, መ݂(ݔ) is the function of 
smoothing parameter and training samples X. 
The ℎ can affect the estimation performance a 
lot. A smaller ℎ will give a too detailed curve 
hence leads to small bais and large variance, 
while a larger ℎ will lead to low variance at the 
expense of increased bias. So, the upper bound 

of ℎ is limited, which isቀ ૛ૠ૙
ૠ૙√࣊

ቁ
૚
૞ × ࢙.  

 
By observing Eqn. 1.6 and 1.7, we find that 
GMM may treated as the generalized form of 
parzen window method. GMM is variation 
parameter estimation model; and parzen 
window method is a fixation parameter 
estimation model. So, we let this upper bound 
of ℎ as the upper bound as the same time, that 
is to say; 
 

0 < ௜ߪ ≤ ൬
૛ૠ૙
ૠ૙√࣊

൰
૚
૞

× ࢙, ࢏)

= ૚,૛, … …  (ࡺ,

We initialize the population of ߪ௜ , (݅ =
1, 2, … … . ,ܰ) with the random numbers which 
obey the uniform density distribution in interval 
[0,( ૛ૠ૙

ૠ૙√࣊
)૚/૞ × ࢙].  

 
2. Second, we initialize the population of ߱௜ , (݅ =

1,2, … . . ,ܰ)with the random number which obey 
the uniform density distribution in interval [0, 1] 
and guarantee that ∑ ߱௜ = 1.ே

௜ୀଵ  our experiment is 
carried out according to the algorithm ……: 

 
For each probability density, we use GPSOGJ 
algorithm to search the optimal parameters based 
on four different types of univariate artificial 
dataset. Every type of dataset is generated 100 
times randomly. The averaged result based on these 
100 datasets is summarized for some distributions. 
The mean square error (MSE) is used to evaluate 
the estimation performance. 
 
 

 

 

COMPARATIVE RESULTS GRAPH OF 
MSE IN PDF 
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The detailed comparative results are listed in fig… 
From the experimental results, we can get the 
following three observations, 
 

1. With increase of iteration the MSE (Mean 
Squared Error) decrease gradually, and 
when the optimal parameters are searched, 
MSE becomes steadily. 

2. The estimation performances of PGMM 
are worst among all the competitive 
density estimation algorithms, where the 
estimation errors of PGMM are higher 
than the other two. 

3. IGMM obtains the best estimation 
performance, since it can find the stable 
and robust parameters for the probability 
density estimation application. 
 

CONCLUSION 
This paper has presented, an improved Gaussian 
mixture model (IGMM) based on least-squares 
cross-validation (LSCV) and Gaussian PSO with 
Gaussian jump (GPSOGJ) is developed. In order to 
measure the estimated error between the true 
density function and the estimated density function, 
a new error measure criterion is derived based on 
the least-squares cross-validation. Then, GPSOGJ 
is used to find the optimal parameters that can 
make the estimation error reach the minimum. 
Finally, in the experiments, we compare the 
performance of IGMM with two existing methods, 
i.e., GMM with Parzen window (PGMM) and 
GMM based on particle swarm optimization 
(PSOGMM), on four probability distributions: 
Uniform density, Normal density, Exponential 
density, and Rayleigh density. The experimental 
results show that the proposed IGMM strategy is 
feasible and effective, which can achieve a better 
estimation performance by applying the optimized 
parameters.This work has also presented a detailed 

account on the state of the art in the field of Motion 
Detection through Computer Vision. 
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