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Abstract: A robust security framework that effectively safeguards IoT systems against potential adversarial attacks is in 

high demand. However, creating an appropriate security model for IoT is complex due to its dynamic and distributed nature. 

This complexity has spurred researchers to delve into the role of machine learning (ML) in shaping security models. An 

examination of various ML algorithms for IoT security is presented, accompanied by an exploration of their strengths and 

limitations. Existing research highlights concerns such as significant computational overhead and privacy risks associated 

with ML algorithms. This review concentrates on the application of federated learning (FL) and deep learning (DL) 

algorithms to enhance IoT security. Unlike traditional ML methods, FL models can preserve data privacy while sharing 

information with other systems. The study proposes that FL has the potential to address the shortcomings of conventional 

ML approaches by maintaining data privacy during information sharing. The review delves into diverse models, provides an 

overview, conducts comparisons, and offers a summarization of FL and DL-based techniques for bolstering IoT security. 
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1. Introduction 

IoT constitutes a network comprising diverse interconnected devices, including sensors and actuators, 

functioning at an accelerated data collection pace. By employing a network of modest sensors and 

interconnected entities, comprehensive data acquisition concerning our environment and surroundings can be 

achieved at an elevated magnitude. The ubiquity of IoT is steadily on the rise, with projections indicating a 

proliferation of approximately 27 billion IoT-based applications by the year 2024 [1]. The escalating 

prominence of IoT can be attributed to its remarkable attributes encompassing automation, dependability, 

scalability, and resilience. These distinctive traits possess the potential to revolutionize forthcoming IoT 

applications and elevate the caliber of service (QoS) provided by such applications, spanning domains like smart 

urban centers, intelligent healthcare [2], industrial automation [3], and advanced transportation systems [4].  

Nonetheless, the incorporation of the IoT system with a multitude of devices introduces security apprehensions 

within IoT applications. IoT establishes connections with other interconnected devices via a centralized server, a 

factor that amplifies concerns regarding privacy and security. The diverse and ever-changing nature of IoT 

devices renders them susceptible to various forms of threats and security breaches [5]. Furthermore, the 

heightened vulnerability of IoT devices increases the risk of device impersonation, thus presenting significant 

challenges to the data security and privacy of IoT systems. Navigating these challenges necessitates the 

establishment of a robust security framework capable of thwarting adversarial attacks on IoT. However, the 

process of devising an effective security strategy for IoT is immensely intricate and demanding, primarily due to 

the inherent limitations imposed by resource constraints within the IoT system [6]. A substantial number of IoT 

devices possess restricted resources such as computational capabilities, bandwidth, and memory, which do not 

align with the demands of intricate security solutions. 

Traditional security methodologies, including techniques like malware identification, access control, device 

authentication, and cryptography-based methods, have been previously suggested to enhance IoT security 

[7,8,9]. Yet, the task of identifying various categories of cyber attacks and security vulnerabilities through these 

approaches is exceptionally intricate. Moreover, unresolved and critical operational issues introduce security 

vulnerabilities that erode the reliability of the IoT framework. The need of the hour is a transformation of 

existing security strategies to effectively detect emerging cyber attacks. This necessitates the deployment of an 

intelligent and astute model capable of recognizing diverse forms of attacks within the IoT realm, encompassing 
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denial of service (DoS), distributed DoS (DDoS), flooding attacks, jamming attacks, and botnet attacks [10]. 

Leveraging artificial intelligence (AI) based techniques in devising and crafting an intelligent attack detection 

model holds promise for fortifying IoT systems. Harnessing the depth of AI knowledge, particularly machine 

learning (ML), empowers researchers to identify anomalies and unwarranted malicious activities within the IoT 

ecosystem. Consequently, this offers a dynamic security solution that remains in a state of continuous 

enhancement and relevance [11]. Specifically, machine and deep learning (DL) models encompass an array of 

principles, methods, and intricate transformation functions designed to extract valuable insights and noteworthy 

data patterns from security-related data. This lays the foundation for training machines to prognosticate threats 

or risks at their nascent stages, thereby enabling proactive defense mechanisms. 

Nonetheless, traditional machine learning (ML) algorithms demand a substantial volume of training data to 

execute specific tasks. The acquisition of extensive datasets for ML models escalates concerns related to privacy 

and security. Furthermore, ML models encounter challenges linked to privacy breaches arising from the 

necessity to transmit device data to a centralized third-party server. The feasibility of implementing centralized 

ML models within the IoT context is hampered by the considerable data size, and the computational expense 

entailed in training such extensive models [12]. More recently, federated learning (FL) has emerged as a viable 

alternative to surmount the limitations inherent in conventional ML algorithms [13,14]. In contrast to 

conventional ML models, the migration of data into a central server is not obligatory in the framework of 

federated learning. This reduction in reliance on centralized servers significantly curtails the potential for 

privacy breaches, rendering it a favored approach compared to traditional ML algorithms. Another promising 

technology extensively employed in fortifying the security of IoT systems is deep learning (DL). The 

effectiveness of DL models in enhancing the security of IoT systems has been well demonstrated [15]. 

While both Federated Learning (FL) and Deep Learning (DL) fall under the umbrella of machine learning (ML), 

this review delves into these two models to offer an all-encompassing analysis, encompassing comparisons and 

their respective importance within IoT security. The objectives of this survey are as follows: 

 Recognize and categorize privacy risks within IoT systems. 

 Highlight the obstacles that hinder the effective utilization of federated learning and deep learning for 

safeguarding privacy. 

 Conduct an exhaustive assessment of research endeavors employing federated learning and deep 

learning techniques to ensure privacy within the IoT domain. 

 Pinpoint the most significant and prospective avenues for future exploration. 

2. Related Work 

Over recent years, the realms of privacy, machine learning (ML), and the Internet of Things (IoT) have 

intersected. Given the pivotal role that ML and cyber security play within IoT landscapes, numerous researchers 

have undertaken surveys and tutorials to provide pragmatic guidance in addressing cyber security threats and 

charting pathways for forthcoming solutions. However, the majority of existing surveys primarily tackle cyber 

security concerns in IoT settings while overlooking the aspect of privacy. These surveys commonly assign 

greater prominence to other cyber security threats such as network attacks or software-based breaches. In 

contrast, the limited numbers of surveys that center on privacy provide a constrained perspective by focusing 

solely on specific privacy-preserving solutions. 

2.1. Cyber security based on machine learning 

Multiple surveys have examined machine learning (ML) based cybersecurity solutions, yet few have delved into 

the realm of privacy. For instance, [16] conducted an analysis of ML-based Internet of Things (IoT) solutions, 

focusing primarily on security. They scrutinized vulnerabilities and attack surfaces, evaluating the pros and cons 

of various ML models within different IoT layers. In the context of privacy, they briefly explored studies 

highlighting the potential data leakage from ML algorithms [17]. This susceptibility affects privacy-preserving 



International Journal of Engineering Technology and Applied Science  

 (ISSN: 2395 3853), Vol. 10 Issue 2 February 2024 

Paper ID: IJETAS/February/2024/01 
 

ML and deep learning (DL) algorithms, leaving them exposed to predominant attacks, such as distributed DL 

methods that cannot maintain the confidentiality of the training set. The survey ultimately underscores that 

privacy preservation in this domain is in its early stages and warrants further investigation. Author [18] 

conducted a review of ML-based solutions for IoT cyberattacks across network, malware, and privacy 

dimensions. In the privacy sphere, their examination centered on works employing Federated Learning (FL), an 

Artificial Intelligence (AI) model development framework distributed across edge devices. FL ensures secure 

models while safeguarding user privacy and enhancing performance. Their focus extended to healthcare, 

exploring adaptive access control mechanisms, like Ciphertext Policy Attribute-based Encryption (CP-ABE) 

and dual encryption, as well as Merkle Hash Trees (MHTs). 

In a similar vein, [19] provided an expansive overview of ML-based cybersecurity solutions, particularly 

diverging in their exploration of Blockchain (BC) technologies to bolster user privacy. They introduced 

taxonomy for IoT security and privacy solutions involving ML algorithms and BC techniques, predicting their 

future integration. Privacy breaches were categorized into Man-in-the-middle (MiTM) attacks and Data Privacy. 

ML-based approaches like Stochastic Gradient Descent (SGD), Logistic Regression (LR), Oblivious Evaluation 

of Multivariate Polynomial (OMPE), Support Vector Machines (SVM), and Naive Bayes (NB) were scrutinized.  

Author [20] contributed by evaluating ML-based cybersecurity solutions within 5G networks. Their focus 

centered on recent studies addressing privacy concerns arising from service providers' usage of private user data. 

However, their survey mainly offered guidelines on the responsible use of private data to mitigate privacy 

issues. Turning to DL models, [21] analyzed existing cybersecurity threats and DL-based solutions. Within the 

privacy domain, they tackled adversarial attacks that could compromise user privacy, including scenarios where 

Deep Neural Networks (DNNs) could be manipulated to yield false inputs and misclassifications. They 

highlighted existing remedies based on defensive distillation and targeted gradient sign methods [22]. Author 

[23] expanded their survey to encompass DL-based solutions for various cyberattacks within mobile networks. 

Privacy concerns prompted a review of DL-based privacy preservation strategies, classified into collaborative 

DL, differential privacy, and training on encrypted data. They observed that most of these works adopted 

supervised learning. Collaborative DL solutions only shared partial data, and the utilization of differential 

privacy averted dataset exposure. Furthermore, solutions employing encrypted datasets for DNN training 

achieved reasonable accuracy but exhibited notably slower performance compared to non-encrypted data. 

Lastly, [24] homed in on privacy and security issues tied to Federated Learning (FL). They dissected 

unintentional data leakage, model reconstruction attacks, Generative Adversarial Network (GAN)-based 

inference attacks, and inference attacks. Their evaluation encompassed privacy-preserving techniques, including 

gradient noise addition and compression, Secure Multi-Party Computation (SMC), Differential Privacy, and 

Blockchain technology. Their findings underscored inference-based attacks as particularly menacing to FL 

privacy. Overall, these surveys collectively highlight a consistent observation: privacy protection within IoT 

environments remains nascent. 

2.2. Surveys on Privacy in IoT 

Numerous studies have examined privacy concerns within IoT environments, yet their focus has largely been on 

privacy threats and attacks. In contrast, [25] introduced a comprehensive approach by proposing a threat model 

and taxonomy that classifies diverse attack types based on involved actors and assets. They identified key assets 

susceptible to privacy breaches in machine learning (ML) contexts, encompassing the training dataset, the 

model itself, its parameters, hyper-parameters, and architecture. The relevant actors include data owners, model 

owners, and model consumers. The duo extensively analyzed privacy-related attacks, targeting knowledge 

acquisition such as training data and model information. These attacks were grouped into four primary 

categories: membership inference, reconstruction, property inference, and model extraction. After a thorough 

assessment of various ML models, the authors concluded that Decision Trees (DT), Linear Regression (LR), and 

Support Vector Machine (SVM) exhibit heightened vulnerability to such attacks. 
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Lastly, in the realm of IoT environments, the surveys predominantly center on specific privacy-preserving 

solutions. However, most of these inquiries tend to concentrate on differential privacy without delving into the 

variations in learning architectures: centralized, distributed, and federated. In [26] conduct a review that 

encompasses significant privacy threats within IoT settings, categorizing them into four groups: authentication 

and authorization, edge computing mediators, data anonymization, and data summarization. They highlight 

primary shortcomings in existing solutions, notably the lack of thorough performance evaluation, real-life 

scenario assessments, and precision in data access granularity. [27] Undertakes an exploration of centralized 

privacy-preserving solutions that harness ML within IoT contexts. Initially, they classify data generated across 

distinct IoT layers and subsequently scrutinize ML-based privacy solutions. The studies examined reveal that 

ML techniques employed for safeguarding privacy are tailored to specific data categories. The authors also 

emphasize the absence of standardization and interoperability as impediments in crafting more comprehensive 

global privacy-preserving solutions. Similar in approach, [28] analyze privacy preservation solutions to identify 

fundamental traits that an IoT privacy framework should embody to ensure user privacy while aligning with 

GDPR requisites. Their scrutiny leads them to propose a fusion of the following components: (1) ML techniques 

for enhancing user privacy protection, (2) policy languages to delineate user privacy preferences and express 

intricate policies, and (3) deployment of negotiation techniques to enhance user services while upholding their 

privacy. 

In [29] delve into the domain of privacy-preserving ML, distinguishing between solutions geared toward 

safeguarding privacy during prediction and those during training. In the prediction sphere, these solutions adopt 

strategies like differential privacy, secure multi-party computation, and homomorphic encryption. Training-

focused privacy-preserving solutions are categorized into collaborative and aggregation scenarios, both of which 

embrace differential privacy, homomorphic encryption, and secret-sharing mechanisms. Lastly, [30] delve into 

the gamut of techniques aimed at shielding user privacy within Federated Learning (FL). Their classification 

groups these techniques into three primary categories: firstly, methods such as k-anonymity, l-diversity, and t-

closeness that secure user privacy before data availability; secondly, techniques that ensure privacy during the 

training phase; and thirdly, techniques grounded in Differential Privacy, providing user protection at all stages 

of data model training. Their conclusion underscores that while Differential Privacy effectively guarantees 

privacy preservation in FL, it is not without its drawbacks, particularly in terms of privacy degradation with 

increasing composition time. 

3. Privacy Challenges and Threats in IoT 

In this segment, we undertake an examination of privacy-related challenges and threats within the realm of IoT. 

To facilitate this, we initiate by providing a comprehensive overview of IoT systems in order to discern potential 

privacy risks. The IoT architecture comprises multiple hierarchical layers, conventionally classified into four 

primary strata [31] (depicted in Figure 1): the Perception Layer, Network Layer, Middleware Layer, and 

Application Layer. The Perception Layer encompasses various devices such as sensors and actuators, which 

play a pivotal role in gathering information from the surrounding environment to oversee and manage physical 

conditions. Sensors are responsible for detecting factors like temperature, humidity, air quality, motion, and 

acceleration, while actuators regulate the operations of physical apparatuses, such as controlling a vehicle's 

acceleration. Devices situated within the Perception Layer generate copious amounts of data, which 

subsequently flow to the Network Layer for further processing and secure routing. Operating within the IoT 

infrastructure, the Network Layer undertakes data processing and transmission tasks across the system. In 

certain instances, a Middleware Layer serves as a bridge between the Network Layer and the Application Layer, 

assisting in the management of vendor-specific services and catered application requirements. Occupying the 

zenith of the IoT framework, the Application Layer leverages data that has undergone processing from diverse 

IoT devices to execute functions tailored to specific applications. 
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Fig.1 The IoT architecture 

The substantial volume of sensitive data exchanged within the IoT infrastructure, coupled with the resource-

constrained nature of IoT devices and the data processing operations executed by IoT applications, raises 

significant privacy apprehensions. These concerns can be categorized as follows: (1) direct threats, wherein 

attackers manage to access sensitive information directly, and (2) indirect threats, where attackers deduce or 

speculate about information without obtaining actual data access. Instances of direct information exposure can 

manifest across various strata of the IoT architecture. Data leakage may stem from deliberate actions (malicious 

users, malware, viruses, etc.) or unintentional occurrences (inadvertent disclosure of sensitive data). Notably, the 

Intel Security report [32] underscores that 45% of data leakage is attributed to employees, with 51% of these 

instances being accidental. Ill-intentioned parties exploit system vulnerabilities to bypass authentication 

mechanisms and gain unauthorized access to sensitive data. 
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Membership inference attacks concentrate on the attributes of individual data instances. In such attacks, an 

adversary assesses whether a given individual data record was employed in training a machine learning (ML) 

model. Privacy infringement occurs when the inclusion of an individual's data in the dataset is itself sensitive. 

For instance, if it's revealed that a personal medical record contributed to a health-related ML model, this 

disclosure directly jeopardizes the person's identification and health information. The pioneering membership 

inference attack on ML, introduced by [33], involves an attacker with black-box access to the model and utilizes 

confidence scores of inputs to ascertain data participation in training. More recently, Author in [34] presented 

more versatile attacks with reduced cost and undiminished efficacy. Similarly, [35] investigated scenarios where 

the attacker possesses access to both the model and average training loss. The model inversion attack [36] 

empowers adversaries to extract underlying participant training data by analyzing ML model predictions. 

Author demonstrated notable instances of these attacks. In the first case [37], they retrieved genomic data of 

patients by inverting a model used for medicine dosage predictions. The second instance [38] involved 

extracting training data instances from observed model predictions. Through confidence scores, they 

reconstructed images of faces resembling given examples. [39] extended this approach by proposing a model 

inversion attack in healthcare analytics, considering differences in the model before and after gradient updates. 

[40] devised an attack that recovers model parameters based on observed predictions, leveraging input/output 

pairs for equation solving. Model stealing attacks are geared toward recovering internal training parameters or 

sensitive details of ML models. As trained models are considered proprietary, particularly in the realm of Deep 

Neural Networks (DNNs), revealing model parameters can inadvertently lead to data disclosure. Property 

inference attacks [41] deduce distinct patterns of information from a target ML model, identifying sensitive 

patterns within the model's training data. These attacks have been applied to various models, including Hidden 

Markov Models (HMM) [42], Support Vector Machines (SVM) [43], and Neural Networks (NN) [44]. Re-

identification attacks [45] combine data from multiple sources to re-identify a record from outsourced, public, or 

open data repositories. An illustrative re-identification attack exploits a voter registration list to re-identify a 

government health record from data released by a health insurance company. Impersonation attacks [46] involve 

monitoring a device's communication pattern and attempting to replicate it. The adversary gains access to the 

device modifies privacy preferences and ultimately inserts counterfeit data into the system. 

3.1. Federated Learning for IoT security 

Federated learning (FL) is centered on the notion of constructing global models through decentralized data 

sources. This inherent approach substantially enhances privacy levels within distributed systems. FL champions 

privacy by extending the training of machine learning (ML) models to Internet of Things (IoT) devices, 

effectively enabling these client devices to engage in model learning. Within this paradigm, dispersed nodes 

employ their individual data to locally train ML models, subsequently transmitting model parameters to other 

nodes. This orchestrated process enables clients to generalize their localized models based on the collective 

model parameters overseen by a central server. FL's design involves participants exclusively sharing gradients 

for aggregation purposes, thereby heightening the safeguarding of localized data privacy. In its application to 

IoT networks, initial efforts have predominantly revolved around extensive data analytics pertinent to sensor 

devices operating within IoT environments. 

The growing significance and adaptability of IoT applications have heightened the vulnerability of IoT devices 

to adversarial attacks and security threats, subsequently impacting ML, FL, and DL models. These threats 

manipulate data inputs and tweak network parameters to yield erroneous outcomes [47]. Numerous research 

endeavors have explored the integration of FL as a means to devise potential solutions for enhancing IoT 

security. Approaches such as ensemble or adversarial training [48] have been suggested to fortify IoT systems. 

Nonetheless, these techniques exhibit limited scalability when applied to distributed networks and are tailored to 

specific attack types. FL, with its compatibility with the distributed nature of IoT networks, emerges as a potent 

tool for detecting a wide spectrum of security threats and attacks, thereby contributing to the development of 

robust defense mechanisms. Leveraging FL's privacy enhancement attributes, security frameworks are designed 

to empower individual IoT devices to concurrently execute neural network models. This parallel execution 

bolsters the security model against diverse adversaries. Integrating FL with IoT not only expedites the learning 
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process but also accelerates attack detection while minimizing potential risks. In the intricate landscape of 

heterogeneous IoT learning, the integration of an attack detection module within the FL environment becomes 

imperative. A notable example of such a framework is presented in [49], which deploys a dynamic model for 

assessing aggregated parameters to mitigate attacks within the IoT-FL interaction. This study underscores the 

need for innovative approaches to detect and prevent various attack types through FL, as discussed in [50]. To 

address the challenge of detecting anomalies, an efficient anomaly detection process has been established and 

deployed at the global server [51]. This process identifies rare and distinct updates, eliminating malicious data 

instances and retaining crucial data features. The integration of FL enables the continuous monitoring and 

updating of models, facilitating the identification and prevention of malicious activities and unauthorized users 

[52]. Additionally, FL models can be trained to identify unauthorized users in dynamic IoT networks [53]. 

These models further expedite the identification of compromised IoT devices within FL networks. 

Nonetheless, the FL-based IoT environment is confronted with communication bottlenecks that contribute to 

increased communication delays. Efforts to alleviate this bottleneck are explored in a comprehensive survey 

presented in [54]. Communication congestion may arise due to factors such as the proliferation of participating 

devices, restricted network bandwidth, limited computation at edge nodes, and network heterogeneity. A 

solution to this limitation involves updating the model, selecting clients to manage the number of participants 

and communication load, employing decentralized training, and embracing Peer-to-Peer learning. Addressing 

the communication bottleneck concern, an approach known as decentralized FL (DFL) is implemented to 

mitigate congestion around the central server. DFL operates in both synchronous (Sync-DFL) and asynchronous 

(Async-DFL) modes, with Async-DFL pioneering a generic FL framework that is asynchronous and eliminates 

waiting periods. This innovation facilitates efficient training of distributed models within the heterogeneous IoT 

landscape. In conjunction with communication bottlenecks, intermittent connectivity of IoT devices presents 

another challenge for FL-based IoT. This issue is tackled in [55], where a novel framework is proposed utilizing 

the Message Queue Telemetry Transport (MQTT) protocol and the Open Mobile Alliance (OMA) Lightweight 

Machine-to-Machine (LwM2M) semantics. This framework enhances the FL model's robustness while 

managing IoT devices and optimizing connectivity and communication efficiency. The feasibility of the 

proposed protocol is examined; demonstrating its capacity to improve connectivity compared to existing Proof-

of-Concept (PoC) setups. The stability of the communication process is also impacted by intermittent 

connectivity. The challenge posed by this aspect in FL-based IoT is discussed in [55], where a novel framework 

harnessing the Message Queue Telemetry Transport (MQTT) protocol and the Open Mobile Alliance (OMA) 

Lightweight Machine-to-Machine (LwM2M) semantics is proposed. This framework enhances the robustness of 

FL models while managing IoT devices and optimizing connectivity and communication efficiency. The 

feasibility of the protocol is assessed and compared against existing Proof-of-Concept (PoC) implementations to 

validate its scalability. In conclusion, a concise evaluation of the FL process for IoT is outlined in Table 1. 

Table１ Evaluation of Federated Learning in IoT security 

Aspect Evaluation for Federated Learning in IoT Security 

Advantages 

- Privacy Preservation: Data remains decentralized, enhancing privacy. 

- Data Efficiency: Reduces data transmission, conserving bandwidth. 

- Local Learning: Devices learn locally, minimizing data exposure. 

- Security: Centralized data storage vulnerability is reduced. 

- Scalability: Supports large-scale IoT deployments. 

- Heterogeneity: Accommodates diverse IoT device capabilities. 

Challenges 

- Communication Overhead: Communication between devices can be taxing. 

- Data Heterogeneity: Differing data quality and formats affect learning. 

- Model Aggregation: Ensuring accurate model synthesis is challenging. 

- Device Constraints: Resource-limited devices may struggle with training. 

- Security Concerns: Ensuring device authenticity and model privacy. 

- Network Latency: Slow or intermittent connections can hinder learning. 
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Use Cases 

- Anomaly Detection: Collaborative model learns to identify deviations. 

- Predictive Maintenance: Devices forecast maintenance needs collectively. 

- Healthcare Monitoring: Devices learn health trends without sharing data. 

- Smart Grid Management: Optimizing energy consumption without data 

sharing. 

- Industrial IoT Security: Detecting breaches and vulnerabilities collaboratively. 

Implementation Steps 

- Device Selection: Choose suitable devices based on capabilities. 

- Model Design: Design a robust model accommodating data variety. 

- Initial Model Distribution: Deploy initial model to devices. 

- Local Training: Devices train on local data with iterative updates. 

- Model Aggregation: Federated server aggregates local models into global. 

- Privacy Measures: Employ techniques like differential privacy for protection. 

- Secure Communication: Ensure encrypted communication between devices. 

Benefits for IoT Security 

- Enhanced security due to data decentralization and reduced exposure. 

- Privacy preservation through localized learning and limited data sharing. 

- Scalability for large IoT deployments without centralized resource strain. 

- Improved efficiency with reduced data transmission and processing. 

- Adaptability to heterogeneous IoT device landscape. 

 

3.2. Deep Learning for IoT security 

Given the rapid evolution and increased complexity of security breaches, the task of detecting such breaches 

using existing models, which primarily rely on detecting deviations from the normal behavior of networks and 

IoT devices with minimal false alarms and swift detection times, has become considerably intricate. In addition 

to delving into Federated Learning (FL), this section also explores the contribution of deep learning (DL) 

models to fortifying the security of IoT systems. 

The Internet of Things is rapidly evolving into a ubiquitous computing service necessitating substantial data 

storage and processing capacities [56]. Regrettably, due to limitations in resources, self-organization, and the 

unique attributes of close-range communication within the IoT realm, there exist challenges. Employing Deep 

Learning (DL) methodologies presents opportunities to address a range of security concerns. Presented here is a 

deep learning model tailored to bolster IoT security. In summary, the investigation underscores that leveraging 

Deep Learning for the implementation of security measures – encompassing authentication, Hardware Device 

Integrity Testing, and confidentiality – in IoT devices and their inherent vulnerabilities proves advantageous.  

Deep learning (DL) stands as the forefront methodology for delving into data exploration within the IoT context, 

discerning the patterns of 'normal' and 'abnormal' behavior among IoT components based on their interactions 

within the IoT ecosystem [57]. DL models possess the remarkable ability to anticipate emerging attacks by 

drawing insights from previous attack instances, and they exhibit an impressive aptitude for predicting new 

future attacks by assimilating knowledge from past occurrences. It is essential to recognize that, in light of the 

escalating potency and resources of attackers, traditional machine learning techniques employed for attack 

detection prove inadequate in detecting intricate cyber assaults. These methods falter in recognizing variations 

in the characteristics of threats and attacks, and they struggle to extract pertinent attributes that differentiate 

novel or modified attacks from innocuous events. The utilization of deep learning-powered neural networks 

offers a remedy to this challenge, given their proficiency in managing intricate classification and attack 

detection tasks [58]. A depiction of how DL models can offer potential for enhancing IoT security is presented 

in Figure 2. 
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Fig.2 Deep Learning model IoT security 

The workflow of the DL process in the context of attack detection is outlined in the following key points:  

 Preprocessing of data: As an initial step within the attack detection process, data preprocessing assumes 

a crucial role. This preprocessing phase serves to mitigate uncertainties inherent in the data, 

encompassing external noise, missing values, null entries, redundant information, and more. The raw 

input data undergoes refinement to render it amenable to classification. The presence of uncertainties in 

the input data can significantly impact classification accuracy, underscoring the necessity to eliminate 

them to enhance the effectiveness of detecting and classifying attacks within IoT environments. 

 Extraction of features: This step holds significant prominence within the attack detection procedure. 

Broadly, feature extraction entails isolating pertinent and crucial attributes from the input data. The 

extraction of solely significant features serves to diminish dimensionality, as numerous features may 

not substantially contribute to the overall efficacy of the attack detection endeavor. By curtailing 

unnecessary and redundant features, not only does this action streamline computational demands, but it 

also bolsters the overall performance of the attack detection process. 

 Detection of attacks and classification: During this procedure, the extracted attributes serve as inputs 

for the DL model, facilitating the identification of security breaches. Subsequent to pinpointing attacks 
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within the input data, the classifier proceeds to categorize various attack types, such as Denial-of-

Service (DoS) and Distributed Denial-of-Service (DDoS) attacks, leveraging the extracted attack-

associated features. The DL models undergo training to perpetually surveil the network, enabling the 

timely detection of anomalous shifts in network behavior. Upon recognizing such alterations, the model 

undertakes the classification of data into either normal or malicious categories. 

 Evaluation of performance: The evaluation of DL model performance involves the assessment of 

various performance metrics, encompassing measures like accuracy, precision, recall, and support.  All 

the above steps depicted in figure 3. 

 

 
Fig.3 Workflow of DL process in the detection of attacks 

 

4. Difficulties linked with Federated Learning (FL) and Deep Learning (DL) models.  

4.1. Difficulties linked with Federated Learning (FL): 

 Communication Overhead: FL involves constant communication between edge devices and a central 

server, which can lead to significant communication overhead, especially in large-scale and resource-

constrained environments [59]. 

 Heterogeneity: Devices in FL may differ in terms of hardware capabilities, data distribution, and 

network connectivity, posing challenges in aggregating and reconciling diverse data sources.  
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 Privacy Concerns: While FL is designed to protect data privacy, there can still be risks of data leakage 

during aggregation or inference if not properly managed [60]. 

 Non-IID Data: FL assumes independently and identically distributed (IID) data, but real-world data is 

often non-IID, leading to challenges in achieving accurate model convergence. 

 Model Drift: Devices in FL may have different data distributions over time, leading to model drift and 

degradation of global model performance. 

 Secure Aggregation: Ensuring secure aggregation of model updates from multiple devices while 

preserving privacy is a complex challenge. 

 

4.2. Difficulties linked with Deep Learning (DL): 

 Data Quality and Quantity: DL models require large volumes of high-quality labeled data, which can 

be scarce or expensive to obtain, especially in niche domains. 

 Overfitting: DL models are prone to overfitting, where they perform well on training data but 

generalize poorly to new, unseen data [61]. 

 Computation and Resource Intensity: Training DL models can be computationally intensive, requiring 

powerful hardware and significant energy consumption. 

 Interpretability: DL models are often considered black-box models, making it challenging to 

understand their decision-making processes, especially in critical applications. 

 Hyperparameter Tuning: Selecting optimal hyperparameters for DL models is a time-consuming and 

complex task that significantly impacts model performance. 

 Transfer Learning: Adapting pre-trained DL models to new tasks can be challenging due to domain 

differences and the need for fine-tuning. 

 Bias and Fairness: DL models can inherit biases present in training data, leading to biased predictions 

and potential fairness issues [62]. 

 Scalability: As DL models become larger and more complex, deploying and managing them at scale 

becomes a challenge, especially in edge and distributed computing environments. 

These challenges underline the need for ongoing research and innovation to address the limitations and enhance 

the effectiveness of both Federated Learning and Deep Learning models in various applications. 

5. Conclusion 

This comprehensive paper delves into the utilization of Machine Learning (ML) algorithms, particularly 

emphasizing Federated Learning (FL) and Deep Learning (DL), to bolster the security of Internet of Things 

(IoT) environments. The examination encompasses a diverse array of FL and DL techniques, all geared toward 

identifying various security threats and potential attacks targeting IoT. The synergistic deployment of FL and 

DL holds the potential to furnish robust security measures against a multitude of malicious incursions, a feat 

attributed to their adeptness in accommodating the resource-constrained and heterogeneous nature intrinsic to 

IoT devices. 

Moreover, the review intricately outlines contemporary techniques introduced within existing literature and 

undertakes a thorough analysis of layer-wise attacks in IoT. The discernment of these attacks proves pivotal for 

fortifying systems against adversarial maneuvers. Alongside, the study embarks on an exploration of diverse 

ML algorithms poised to counteract security breaches. Considering the attributes and functionalities intrinsic to 

IoT devices, the formulation of an adept security model necessitates the judicious selection of a suitable DL or 

FL model. Subsequent training empowers this security framework to make intelligent real -time decisions by 

assimilating knowledge from available instances. 

In addition to its exploration of ML-based security paradigms, the paper engages with the complexities and 

challenges inherent in implementing such approaches within IoT systems. The challenges brought to light in this 
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research not only underscore existing hurdles but also beckon promising avenues for future research in the realm 

of IoT security. 
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